Все о тюнинге авто

Из каких частей состоит самолет для детей. Привет студент

Изобретение самолета позволило не только осуществить древнейшую мечту человечества - покорить небо, но и создать самый быстрый вид транспорта. В отличие от воздушных шаров и дирижаблей, самолеты мало зависят от капризов погоды, способны преодолевать большие расстояния на высокой скорости. Составные части самолета состоят из следующих конструктивных групп: крыла, фюзеляжа, оперения, взлетно-посадочных устройств, силовой установки, управляющих систем, различного оборудования.

Принцип действия

Самолет - летательный аппарат (ЛА) тяжелее воздуха, оборудованный силовой установкой. При помощи этой важнейшей части самолета создается необходимая для осуществления полета тяга - действующая (движущая) сила, которую развивает на земле или в полете мотор (воздушный винт или реактивный двигатель). Если винт расположен перед двигателем, он называется тянущим, а если сзади - толкающим. Таким образом, двигатель создает поступательное движение самолета относительно окружающей среды (воздуха). Соответственно, относительно воздуха движется и крыло, которое создает подъемную силу в результате этого поступательного движения. Поэтому аппарат может держаться в воздухе только при наличии определенной скорости полета.

Как называются части самолета

Корпус состоит из следующих основных частей:

  • Фюзеляж - это главный корпус самолета, связывающий в единое целое крылья (крыло), оперения, силовую систему, шасси и другие составляющие. В фюзеляже размещаются экипаж, пассажиры (в гражданской авиации), оборудование, полезная нагрузка. Также может размещаться (не всегда) топливо, шасси, моторы и т. д.
  • Двигатели используются для приведения в движение ЛА.
  • Крыло - рабочая поверхность, призванная создавать подъемную силу.
  • Вертикальное оперение предназначено для управляемости, балансировки и путевой устойчивости самолета относительно вертикальной оси.
  • Горизонтальное оперение предназначено для управляемости, балансировки и путевой устойчивости самолета относительно горизонтальной оси.

Крылья и фюзеляж

Основная часть конструкции самолета - крыло. Оно создает условия для выполнения главного требования для возможности полета - наличие подъемной силы. Крыло крепится к корпусу (фюзеляжу), который может иметь ту или иную форму, но по возможности с минимальным аэродинамическим сопротивлением. Для этого ему предоставляют удобно обтекаемую каплеобразную форму.

Передняя часть самолета служит для размещения кабины пилотов и радиолокационных систем. В задней части находится так называемое хвостовое оперение. Оно служит для обеспечения управляемости во время полета.

Конструкция оперения

Рассмотрим среднестатистический самолет, хвостовая часть которого выполнена по классической схеме, характерной для большинства военных и гражданских моделей. В этом случае горизонтальное оперение будет включать неподвижную часть - стабилизатор (от латинского Stabilis, устойчивый) и подвижную - руль высоты.

Стабилизатор служит для придания устойчивости ЛА относительно поперечной оси. Если нос летательного аппарата опустится, то, соответственно, хвостовая часть фюзеляжа вместе с оперением поднимется вверх. В этом случае давление воздуха на верхней поверхности стабилизатора увеличится. Создаваемое давление вернет стабилизатор (соответственно, и фюзеляж) в исходное положение. При подъеме носа фюзеляжа вверх давление потока воздуха увеличится на нижней поверхности стабилизатора, и он снова вернется в исходное положение. Таким образом, обеспечивается автоматическая (без вмешательства пилота) устойчивость ЛА в его продольной плоскости относительно поперечной оси.

Задняя часть самолета также включает вертикальное оперение. Аналогично горизонтальному, оно состоит из неподвижной части - киля, и подвижной - руля направления. Киль придает устойчивость движения самолету относительно его вертикальной оси в горизонтальной плоскости. Принцип действия киля подобен действию стабилизатора - при отклонении носа влево киль отклоняется вправо, давление на его правой плоскости увеличивается и возвращает киль (и весь фюзеляж) в прежнее положение.

Таким образом, относительно двух осей устойчивость полета обеспечивается оперением. Но осталась еще одна ось - продольная. Для предоставления автоматической устойчивости движения относительно этой оси (в поперечной плоскости) консоли крыла планера размещают не горизонтально, а под некоторым углом относительно друг друга так, что концы консолей отклонены вверх. Такое размещение напоминает букву «V».

Системы управления

Рулевые поверхности - важные части самолета, предназначенные для управления К ним относятся элероны, рули направления и высоты. Управление обеспечивается относительно тех же трех осей в тех же трех плоскостях.

Руль высоты - это подвижная задняя часть стабилизатора. Если стабилизатор состоит из двух консолей, то соответственно есть и два руля высоты, которые отклоняются вниз или вверх, оба синхронно. С его помощью пилот может менять высоту полета летательного аппарата.

Руль направления - это подвижная задняя часть киля. При его отклонены в ту или иную сторону на нем возникает аэродинамическая сила, которая вращает самолет относительно вертикальной оси, проходящей через центр масс, в противоположную сторону от направления отклонения руля. Вращение происходит до тех пор, пока пилот не вернет руль в нейтральное (не отклоненное положение), и ЛА будет осуществлять движение уже в новом направлении.

Элероны (от франц. Aile, крыло) - основные части самолета, представляющие собой подвижные части консолей крыла. Служат для управления самолетом относительно продольной оси (в поперечной плоскости). Так как консолей крыла две, то и элеронов также два. Они работают синхронно, но, в отличие от рулей высоты, отклоняются не в одну сторону, а в разные. Если один элерон отклоняется вверх, то другой вниз. На консоли крыла, где элерон отклонен вверх, подъемная сила уменьшается, а где вниз - увеличивается. И фюзеляж ЛА вращается в сторону поднятого элерона.

Двигатели

Все самолеты оснащаются силовой установкой, позволяющей развить скорость, и, следовательно, обеспечить возникновение подъемной силы. Двигатели могут размещаться в задней части самолета (характерно для реактивных ЛА), спереди (легкомоторные аппараты) и на крыльях (гражданские самолеты, транспортники, бомбардировщики).

Они подразделяются на:

  • Реактивные - турбореактивные, пульсирующие, двухконтурные, прямоточные.
  • Винтовые - поршневые (винтомоторные), турбовинтовые.
  • Ракетные - жидкостные, твердотопливные.

Прочие системы

Безусловно, другие части самолета также важны. Шасси позволяют взлетать и садиться с оборудованных аэродромов. Существуют самолеты-амфибии, где вместо шасси используются специальные поплавки - они позволяют осуществлять взлет и посадку в любом месте, где есть водоем (море, река, озеро). Известны модели легкомоторных самолетов, оснащенных лыжами, для эксплуатации в районах с устойчивым снежным покровом.

Напичканы электронным оборудованием, устройствами связи и передачи информации. В военной авиации используются сложные системы вооружения, обнаружения целей и подавления сигналов.

Классификация

По назначению самолеты делятся на две большие группы: гражданские и военные. Основные части пассажирского самолета отличаются наличием оборудованного салона для пассажиров, занимающего большую часть фюзеляжа. Отличительной чертой являются иллюминаторы по бокам корпуса.

Гражданские самолеты подразделяются на:

  • Пассажирские - местных авиалиний, магистральные ближние (дальность меньше 2000 км), средние (дальность меньше 4000 км), дальние (дальность меньше 9000 км) и межконтинентальные (дальность более 11 000 км).
  • Грузовые - легкие (масса груза до 10 т), средние (масса груза до 40 т) и тяжелые (масса груза более 40 т).
  • Специального назначения - санитарные, сельскохозяйственные, разведывательные (ледовая разведка, рыборазведка), противопожарные, для аэрофотосъемки.
  • Учебные.

В отличие от гражданских моделей, части военного самолета не имеют комфортабельного салона с иллюминаторами. Основную часть фюзеляжа занимают системы вооружения, оборудование для разведки, связи, двигатели и другие агрегаты.

По назначению современные военные самолеты (учитывая боевые задачи, которые они выполняют), можно разделить на следующие типы: истребители, штурмовики, бомбардировщики (ракетоносцы), разведчики, военно-транспортные, специальные и вспомогательного назначения.

Устройство самолетов

Устройство летательных аппаратов зависит от аэродинамической схемы, по которой они выполнены. Аэродинамическая схема характеризуется количеством основных элементов и расположением несущих поверхностей. Если носовая часть самолета у большинства моделей похожа, то расположение и геометрия крыльев и хвостовой части могут сильно разниться.

Различают следующие схемы устройства ЛА:

  • «Классическая».
  • «Летающее крыло».
  • «Утка».
  • «Бесхвостка».
  • «Тандем».
  • Конвертируемая схема.
  • Комбинированная схема.

Самолеты, выполненные по классической схеме

Рассмотрим основные части самолета и их назначение. Классическая (нормальная) компоновка узлов и агрегатов характерна для большинства аппаратов мира, будь-то военных либо гражданских. Главный элемент - крыло - работает в чистом невозмущенном потоке, который плавно обтекает крыло и создает определенную подъемную силу.

Носовая часть самолета является сокращенной, что приводит к уменьшению требуемой площади (а следовательно, и массы) вертикального оперения. Это потому, что носовая часть фюзеляжа вызывает дестабилизирующий путевой момент относительно вертикальной оси самолета. Сокращение носовой части фюзеляжа улучшает обзор передней полусферы.

Недостатками нормальной схемы являются:

  • Работа горизонтального оперения (ГО) в скошенном и возмущенном крылом потоке значительно снижает его эффективность, что вызывает необходимость применения оперения большей площади (а, следовательно, и массы).
  • Для обеспечения устойчивости полета вертикальное оперение (ВО) должно создавать негативную подъемную силу, то есть направленную вниз. Это снижает суммарный КПД самолета: из величины подъемной силы, которую создает крыло, надо отнять силу, которая создается на ГО. Для нейтрализации этого явления следует применять крыло увеличенной площади (а, следовательно, и массы).

Устройство самолета по схеме «утка»

При данной конструкции основные части самолета размещаются иначе, чем в «классических» моделях. Прежде всего, изменения коснулись компановки горизонтального оперения. Оно располагается перед крылом. По этой схеме построили свой ​​первый самолет братья Райт.

Преимущества:

  • Вертикальное оперение работает в невозмущенном потоке, что повышает его эффективность.
  • Для обеспечения устойчивости полета оперение создает положительную подъемную силу, то есть она добавляется к подъемной силе крыла. Это позволяет уменьшить его площадь и, соответственно, массу.
  • Естественная «противоштопорная» защита: возможность перевода крыльев на закритические углы атаки для «уток» исключена. Стабилизатор устанавливается так, что он получает больший угол атаки по сравнению с крылом.
  • Перемещение фокуса самолета назад при увеличении скорости при схеме «утка» происходит в меньшей степени, чем при классической компоновке. Это приводит к меньшим изменениям степени продольной статической устойчивости самолета, в свою очередь, упрощает характеристики его управления.

Недостатки схемы «утка»:

  • При срыве потока на оперениях происходит не только выход самолета на меньшие углы атаки, но и его «проседания» вследствие уменьшения его общей подъемной силы. Это особенно опасно в режимах взлета и посадки из-за близости земли.
  • Наличие в носовой части фюзеляжа механизмов оперения ухудшает обзор нижней полусферы.
  • Для уменьшения площади переднего ГО длина носовой части фюзеляжа делается значительной. Это приводит к увеличению дестабилизирующего момента относительно вертикальной оси, и, соответственно, к увеличению площади и массы конструкции.

Самолеты, выполненные по схеме «бесхвостка»

В моделях данного типа нет важной, привычной части самолета. Фото летательных аппаратов «бесхвосток» («Конкорд», «Мираж», «Вулкан») показывает, что у них отсутствует горизонтальное оперение. Основными преимуществами такой схемы являются:

  • Уменьшение лобового аэродинамического сопротивления, что особенно важно для самолетов с большой скоростью, в частности, крейсерской. При этом уменьшаются затраты топлива.
  • Большая жесткость крыла на кручение, что улучшает его характеристики аэроупругости, достигаются высокие характеристики маневренности.

Недостатки:

  • Для балансировки на некоторых режимах полета часть средств механизации задней кромки и рулевых поверхностей надо отклонять вверх, что уменьшает общую подъемную силу самолета.
  • Совмещение органов управления ЛА относительно горизонтальной и продольной осей (вследствие отсутствия руля высоты) ухудшает характеристики его управляемости. Отсутствие специализированного оперения заставляет рулевые поверхности находятся на задней кромке крыла, выполнять (при необходимости) обязанности и элеронов, и рулей высоты. Эти рулевые поверхности называются элевоны.
  • Использование части средств механизации для балансировки самолета ухудшает его взлетно-посадочные характеристики.

«Летающее крыло»

При данной схеме фактически нет такой части самолета, как фюзеляж. Все объемы, необходимые для размещения экипажа, полезной нагрузки, двигателей, топлива, оборудования находятся в середине крыла. Такая схема имеет следующие преимущества:

  • Наименьшее аэродинамическое сопротивление.
  • Наименьшая масса конструкции. В этом случае вся масса приходится на крыло.
  • Так как продольные размеры самолета небольшие (из-за отсутствия фюзеляжа), дестабилизирующий момент относительно его вертикальной оси является незначительным. Это позволяет конструкторам либо существенно уменьшить площадь ВО, либо вообще отказаться от него (у птиц, как известно, вертикальное оперение отсутствует).

К недостаткам относится сложность обеспечения устойчивости полета ЛА.

«Тандем»

Схема «тандем», когда два крыла располагаются один за другим, применяется нечасто. Такое решение используется для увеличения площади крыла при тех же значениях его размаха и длины фюзеляжа. Это уменьшает удельную нагрузку на крыло. Недостатками такой схемы является большое увеличение момента инерции, особенно в отношении поперечной оси самолета. Кроме того, при увеличении скорости полета изменяются характеристики продольной балансировки самолета. Рулевые поверхности на таких самолетах могут располагаться как непосредственно на крыльях, так и на оперении.

Комбинированная схема

В этом случае составные части самолета могут комбинироваться с использованием различных конструкционных схем. Например, горизонтальное оперение предусмотрено и в носовой, и в хвостовой части фюзеляжа. На них может быть использовано так называемое непосредственное управление подъемной силой.

При этом носовое горизонтальное оперение совместно с закрылками создают дополнительную подъемную силу. Момент тангажа, который возникает в этом случае, будет направлен на увеличение угла атаки (нос самолета поднимается). Для парирования этого момента хвостовое оперение должно создать момент на уменьшение угла атаки (нос самолета опускается). Для этого сила на хвостовую часть должна быть направлена ​​также вверх. То есть происходит приращение подъемной силы на носовом ГО, на крыле и на хвостовом ГО (а следовательно, и на всем самолете) без поворота его в продольной плоскости. В этом случае самолет просто поднимается без всякой эволюции относительно своего центра масс. И наоборот, при такой аэродинамической компоновке самолета он может осуществлять эволюции относительно центра масс в продольной плоскости без изменения траектории своего полета.

Возможность осуществлять такие маневры значительно улучшают тактико-технические характеристики маневренных самолетов. Особенно в сочетании с системой непосредственного управления боковой силой, для осуществления которой самолет должен иметь не только хвостовое, а еще и носовое продольное оперение.

Конвертируемая схема

Построенного по конвертируемой схеме, отличается наличием дестабилизатора в носовой части фюзеляжа. Функцией дестабилизаторов является уменьшение в определенных пределах, а то и полное исключение смещения назад аэродинамического фокуса самолета на сверхзвуковых режимах полета. Это увеличивает маневренные характеристики ЛА (что важно для истребителя) и увеличивает дальность или уменьшает расход топлива (это важно для сверхзвукового пассажирского самолета).

Дестабилизаторы могут также использоваться на режимах взлета/посадки для компенсации момента пикирования, который вызывается отклонением взлетно-посадочной механизации (закрылков, щитков) или носовой части фюзеляжа. На дозвуковых режимах полета дестабилизатор скрывается в середине фюзеляжа или устанавливается в режим работы флюгера (свободно ориентируется по потоку).

Для того чтобы поближе познакомиться с устройством самолета, мы не будем сразу жеподниматься на борт сверхзвукового лайнера, а рассмотрим конструкцию попроще: например, устройство легкого тренировочного самолета. Он имеет небольшие размеры и простую конструкцию и, тем не менее, содержит все основные части современного летательного аппарата.

На легких самолетах, как правило, устанавливаются поршневые двигатели воздушного охлаждения. В 20—30-е гг. практически у всех легких самолетов, как впрочем и у остальных моделей, была открытая кабина пилота. В настоящее время кабины закрываются неподвижным либо съемным куполом, изготавливаемым из прозрачного материала — фонарем. У самолетов с высоко расположенным крылом (такие аппараты называются высокопланами) пилотская кабина содержит одну или две двери. У моделей со стандартным расположением крыла — низкопланов, — фонарь сдвигается в сторону или откидывается.

Современные легкие самолеты изготавливают из алюминиевых сплавов, но некоторые части могут быть выполнены из дерева или специальных пластмасс. Их кабины оборудованы навигационными приборами, сложной электросистемой, приемо-передающими радиостанциями.

Знакомство с основными составными частями самолета мы начнем с фюзеляжа.

Фюзеляж — это корпус самолета. К нему крепятся все остальные части конструкции. Однако первые самолеты вообще не имели фюзеляжа, но очень скоро появилась деревянная рама, выполняющая его роль. Первоначально фюзеляж частично обтягивали тканью, но уже в 30-х гг. XX в. большинство самолетов строили с металлическим каркасом и металлической обшивкой.

Из истории абсолютных мировых рекордов высоты полета. После окончания второй мировой войны «за дело» взялись английские пилоты. 23 марта 1948 г. Дж. Каннингхэм на самолете, получившем название «Vampire», поднялся на 18 119 м. Велел за ним дважды отличился пилот У. Ф. Гибб. 4 мая 1953 г. его самолет достиг отметки 19406 м, а 29 августа 1955 г. — 20083 м. Через два года (28 августа 1957 г.) этот результат увеличил англичанин М. Ранлрап — 21 430 м.

Скоростные самолеты делали цельнометаллическими, при этом панели обшивки фюзеляжа тщательно подгоняли друг к другу для того, чтобы получить хорошо обтекаемую поверхность.

Для усиления конструкции в некоторых моделях самолетов, например большегрузных, каркас фюзеляжа изготавливают методом усиления промежуточных стоек дополнительными. На чертеже такой каркас выглядит как сплошное переплетение металлических стержней, по узору напоминающее геодезическую сетку.

Фюзеляжи реактивных самолетов, появившихся в конце 40-х гг. XX в., должны были обеспечивать в пилотской кабине на больших высотах полета нормальное давление воздуха при пониженном давлении за бортом. Такие фюзеляжи должны были выдерживать нагрузки на растяжение и сжатие и при этом сохранять герметичность. На практике это достигалось применением многослойной обшивки и установкой дополнительных поперечных брусов из металла.

Из истории абсолютных мировых рекордов высоты полета. Начиная с 1 958 г. рекорд высоты увеличивался уже не на десятки и даже не на сотни метров. Каждое появление в небе новых моделей самолетов поднимало планку рекорда на несколько километров. 18 апреля 1958 г. американец Г.К. Ваткинс на самолете «Grumman F11F-1» («Tiger») поднялся на высоту 23 449 м. 2 мая 1958 г. французский пилот Е. Карпантье, управляя «SO-9050» — «Tridan» («F-ZWUM»), достиг отметки 24 217 м. Через пять дней американец Г.К. Джонсон на аппарате фирмы «Lockheed» «F-104A» («Starfighter») поднялся до 27 811 м. 14 июля 1959 г. в таблице рекордов появилась первая фамилия советского пилота. В. Ильюшин поднял в воздух самолет конструкции П. О. Сухого « Т-431» и достиг высоты 28 852 м. А американский пилот Л. Флинт 6 декабря 1959 г. на самолете «McDonnell-Douglas» («F-4», «Phantom II») преодолел отметку в 30 км — 30 040 м.

В наши дни не только специальные, но даже обыкновенные пассажирские самолеты совершают полеты на высотах, превышающих 10 000 м. Как известно, воздух на таких высотах сильно разрежен, а температура его опускается до минус 50°С или даже еще ниже. Поэтому в самолетах такого класса герметичной делают не только кабину пилотов, но и весь пассажирский салон. Установленная на пассажирских лайнерах система кондиционирования во время полета поддерживает в салоне нормальные наземные давление, температуру и влажность. Интересную конструкцию имеют стекла пилотской кабины и пассажирского салона. Специальную прозрачную пленку закладывают между двумя слоями стекол. Стекла от этого не теряют прозрачности, а пропускаемый по пленке электрический ток разогревает их и не дает запотевать на любой высоте.

У большинства моделей самолетов с поршневым двигателем в передней части фюзеляжа расположена подмоторная рама, Она получила такое название, потому что на ней устанавливается мотор самолета.

Мотор самолета вращает воздушный винт. Часто его называют пропеллером. Авиационный винт при вращении захватывает воздух и отбрасывает его назад подобно тому, как винт корабля загребает воду. Отброшенные массы воздуха создают тягу, движущую самолет вперед.

У самолетов, построенных по схеме моноплана-низкопла-на, в нижней части фюзеляжа расположен центроплан — центральная часть крыла. Центроплан имеет специальные приспособления для крепления крыльев, называемых в авиастроении консолями, или плоскостями. В зависимости от конструкции самолета они могут быть съемными или жесткозакрепленными. Съемные плоскости позволяют беспрепятственно транспортировать самолет наземным или морским путем.

Пожалуй, практически всем летательным аппаратам нужны крылья, разве что аэростаты и дирижабли могут обходиться без них. Даже лопасти вертолета это не что иное, как вращающиеся крылья. Ведь именно при обтекании крыла воздухом создается подъемная сила — необходимое условие для полета.

Теоретически самолетное крыло является продолжением развития самой древней на земле летающей конструкции — воздушного змея, только устроено оно более сложно.

Из истории абсолютных мировых рекордов скорости полета. Первый зафиксированный рекорд скорости полета был установлен французским пилотом Полем Тиссанлье 20 мая 1909 г. Развитая его самолетом скорость равнялась 54,77 км/ч. Август этого же гола оказался особо «урожайным». 23 августа 1909 г. американец Глен Кертис разогнал свой биплан «Herring-Curtiss» до 69,75 км/ч, а затем француз Луи Блерио на моноплане фирмы «Bleriot» дважды увеличил этот результат: 24 августа 1909 г. — 74,30 км/ч и 28 августа 1909 г.—76,99 км/ч.

Из истории абсолютных мировых рекордов высоты полета. 14 декабря 7959 г. американский пилот Дж.Б. Джордан на самолете фирмы «Lockheed»— «F-104C» («Starfighter») поднялся на высоту 31 513 м. В дальнейшем советские пилоты увеличивали этот результат на несколько километров. 28 апреля 1961 г. Г. Мосолов на самолете конструкции А.И. Микояна «Е-66А» достиг отметки 34 714 м. 25 июля 1973 г. после высотного полета пилота А. Федотова рекорд стал равен 36 240 м. В настоящий момент абсолютный рекорд высоты полета равен 37 650 м. Принадлежит он замечательному советскому пилоту А. Федотову, fro рекордный полет был осуществлен 31 августа 1977 г. на самолете «Е-266М» конструкции А.И. Микояна.

Крыло собирают из лонжеронов — основных продольных несущих балок, нервюр — поперечных элементов и обшивки. Лонжероны и нервюры придают крылу необходимые форму и жесткость и в авиастроении называются силовым набором крыла, или каркасом.

Силовой набор (каркас) крыла современных самолетов имеет еще более сложную конструкцию. Ведь во многих случаях крылья перестали выполнять только роль авиационной плоскости, создающей подъемную силу. В наши дни довольно часто можно встретить самолеты, конструкция которых предусматривает установку на крыльях авиационных двигателей, вооружения, шасси или даже размещения во внутренних полостях крыла топливных баков.

Для придания дополнительной прочности крылу такого самолета его силовой набор изготавливают из прочного металла и усиливают дополнительными распорками. Обшивку таких крыльев изготавливают из хорошо подогнанных друг к другу металлических листов или синтетических материалов, произведенных химическим путем, например, углепластика.

Первые самолеты имели крылья, изготовленные из дерева и обтянутые тканью. Для того чтобы придать ткани прочность и уберечь конструкцию самолета от воздействия атмосферных осадков, ткань пропитывали специальным авиационным лаком. Чтобы выполнить во время полета поворот или вираж, пилот изгибал такие крылья при помощи проволочных тяг. С 30-х гг. XX в. на многих моделях самолетов начали устанавливать цельнометаллические крылья. Изогнуть в полете такое крыло пилоту было бы не под силу. Но и в этом случае конструкторы нашли выход. Оказалось, что для обеспечения маневренности нет необходимости изгибать все крыло — вполне достаточно сделать подвижной лишь его небольшую часть. На задней кромке крыла начали устанавливать подвижные плоскости — элероны, изменяя угол которых пилот мог накренять самолет влево и вправо, или наоборот, устранять непроизвольный крен.

Из истории абсолютных мировых рекордов скорости полета. 10 июля 1910г. французский пилот Леон Маран впервые «переступил» через сотую отметку. Его моноплан фирмы «Bleriot» разогнался до 106,50 км/ч. 6 дальнейшем французские пилоты прочно заняли таблицу рекордов скорости. 29 октября 1910 г. Альфрел Леблан, управляя монопланом «Bleriot», смог достичь скорости 109,73 км/ч. 11 мая 1911 г. Эдуард Ньюпор, управляя бипланом собственной конструкции, достиг скорости 119,74 км/ч, однако уже 12 июня 1911 г. А. Леблан вновь вышел в лидеры — 124,99 км/ч.

Из истории абсолютных мировых рекордов скорости полета. 16 июня 7977 г. француз Эдуард Ньюпор вновь выхолит в лидеры. Биплан «Nieuport» пол его управлением разогнался ло 130,04 км/ч. Через пять дней он закрепил свое достижение — 7 33,11 км/ч. до конца года Ньюпор оставался рекордсменом, но в следующем году в таблице рекордов можно было встретить лишь одну фамилию — француза Жюля Велрине. 13 января 1912 г. моноплан марки «Deperdussin» пол его управлением достиг скорости 145,13 км/ч, 22 февраля 1912 г.— 161,27 км/ч, 29 февраля 1912 г. — 162,53 км/ч, 1 марта 1912 г. — 166,79 км/ч, 13 июля 1912 г. — 170,75 км/ч и 9 сентября 1912г.— 174,06 км/ч.

Несколько позже на задней кромке крыла рядом с элероном появилась еще одна подвижная плоскость — закрылок. Это было сделано для увеличения аэродинамических показателей крыла и самолета в целом. При взлете отклонение закрылков придает самолету дополнительную подъемную силу, а при посадке усиливает сопротивление и укорачивает его посадочный путь.

Дальнейшим шагом по пути увеличения аэродинамических характеристик крыла стало появление на его передней кромке узкой, но длинной подвижной плоскости — предкрылка. Изменяя угол, под которым предкрылок расположен относительно плоскости крыла, пилот может обеспечить более плавное обтекание последнего воздушными массами.

Крыло первых самолетов чаще всего было плоским и это позволяло ему создавать лишь минимальную подъемную силу, но зато снижало сопротивление встречным потокам воздуха. Лишь после становления аэродинамики как серьезной и самостоятельной науки и появления исследовательских институтов, в распоряжении которых были аэродинамические трубы, была доказана низкая эффективность крыла такого сечения (профиля).

Продувая различные предметы в аэродинамической трубе, ученые заметили, что шар, оказывается, создает встречному потоку воздуха гораздо меньшее сопротивление, чем куб. А еще меньшее сопротивление создавал предмет, по форме напоминающий веретено. Кроме этого эксперименты показали, что если даже плоскую пластинку поставить под углом к несущемуся потоку воздуха, то часть воздушных масс, встретив такую преграду, устремится вниз, подталкивая саму пластинку вверх, — возникала подъемная сила. Оказалось, что если изогнуть пластинку выпуклостью вверх, то подъемная сила значительно увеличивается, а «идеальное» сечение — сечение в виде сильно вытянутой капли. Оно создает минимальное сопротивление воздушному потоку и максимальную подъемную силу.

Так как в силовом наборе крыла нервюра является основным поперечным элементом, следовательно, она и придает всему крылу профиль.

Но сечение — это еще не самый главный показатель аэродинамического качества крыла. Оказывается, недостаточно создать такое крыло, которое бы обладало большой подъемной силой и малым сопротивлением. При постройке самолета встает множество других проблем. Основной из них является правильный выбор соотношения массы всего самолета и площади крыла. Кроме этого самолет в полете должен быть устойчивым — резкое изменение его положения в воздухе недопустимо. И, наконец, в целом весь самолет должен быть достаточно прочным, но не тяжелым.

Перед проектированием самолета определяется его назначение, его скорость, грузоподъемность, высота и протяженность полета. После этого можно приступать к выбору размеров самолета и расчету одной из важнейших его характеристик — площади крыла.

Самолет с изменяемой стреловидностью крыла в полете. а. Крылья расправлены — самолет совершает полеты на большие расстояния, а также выполняет взлет и посадку на небольших площадях. б. Крылья прижаты к фюзеляжу. В таком положении самолет способен развить максимальную скорость.

По мере увеличения скорости полета крыло должно уменьшать угол атаки для того, чтобы подъемная сила оставалась равной силе тяжести. Аэродинамическое сопротивление при этом будет постепенно уменьшаться. Эксперименты показали, что минимальным оно будет при угле атаки, равном 3—5°. Однако дальнейшее увеличение скорости требует еще меньших углов атаки, а сопротивление при этом все равно увеличивается.

Конструкторы нашли выход из сложившейся ситуации — оказывается, в этом случае достаточно уменьшить площадь крыла. Каждой части его площади будет соответствовать большая часть веса самолета, и тогда для того, чтобы получить необходимую подъемную силу, надо будет вновь увеличить угол атаки. В результате аэродинамическое сопротивление опять уменьшится.

Таким образом, при конструировании самолета тщательно рассчитывается величина, получившая название «удельная нагрузка на крыло». Она показывает, какое количество веса самолета «приходится» на 1 м2 поверхности его крыла.

Из истории абсолютных мировых рекордов скорости полета. В годы первой мировой войны рекорды на скорость полета не регистрировались, но уже с 1920 г. пилоты Франции вновь подтверждают свое лидерство. 7 февраля 1920 г. Сади Лекуэнт разогнал самолет марки «Nieuport-Delage» до 275,22. км/ч, 28 февраля 1920 г. пилот Жан Казаль—до 283,43 км/ч. 9 октября 1920 г. барон де Романе разгоняет биплан фирмы «SPAD» до 292,63 км/ч. 10 октября 1920г. вновь в лидеры выхолит Сади Лекуэнт — 296,94 км/ч, и 20 октября 1920 г. — 302,48 км/ч. 4 ноября 1920 г. барон де Романе снова на первом месте — 308,96 км/ч, но не надолго. И 72 декабря 7 920 г. опять Сади Лекуэнт — 313,00 км/ч.

Однако вскоре оказалось, что уменьшение площади крыла не сможет решить всех проблем. Например, взлетную и посадочную скорости желательно иметь как можно меньше. А для этого удельная нагрузка на крыло так же должна быть минимальной — следовательно, надо увеличивать площадь крыла. В результате конструкторам постоянно приходится решать вопрос — какой площади должно быть крыло? Сделаешь его небольшим — придется идти на определенный риск, взлетая и садясь на большой скорости. Да и не каждый аэропорт имеет достаточно длинные взлетно-посадочные полосы. Сделаешь крыло большой площади — появится необходимость устанавливать на самолет более мощный двигатель. А это в свою очередь повлечет увеличение запасов топлива и, как следствие, общего веса самолета.

В наши дни выход из создавшейся ситуации был найден. Для того чтобы увеличить подъемную силу крыла на малых скоростях, некоторые модели самолетов начали строить с крылом изменяющейся стреловидности. При взлете или посадке крыло будет большой площади и большого размаха — в таком виде он похож на обыкновенный дозвуковой самолет. При переходе к сверхзвуковой скорости крыло «складывается», перемещаясь с помощью специального устройства, и уменьшает создаваемое сопротивление.

Теперь обратим внимание на заднюю часть самолета — хвост. Здесь расположены киль, руль поворота, стабилизатор и руль высоты. Эти четыре элемента составляют хвостовое оперение и предназначены для сохранения устойчивого полета и управления самолетом. Руль поворота является подвижной деталью киля и с его помощью пилот может изменить направление горизонтального полета. А для изменения высоты полета стабилизатор хвостового оперения тоже имеет подвижную деталь — руль высоты. Кроме этого рули хвостового оперения позволяют летчику выполнять маневры в воздухе и фигуры высшего пилотажа.

Какие только модели самолетов не появлялись в небе в первые годы авиастроения. Встречались даже такие, у которых горизонтальное оперение (стабилизатор с рулем высоты) размещалось спереди. Крыло при этом смещали назад. Такая схема самолета получила название «утка». Однако вертикальное оперение всегда должно быть расположено сзади. Это придает самолету устойчивость в полете. Кстати, воздушный змей устроен таким же образом — роль вертикального оперения у него играет веревочный хвост. Так что без хвоста далее змей летать не будет.

По конструкции хвостовое оперение практически ничем не отличается от крыла. Оно так же состоит из силового набора (каркаса), в который входят лонжероны и нервюры. Правильно рассчитанные размеры деталей хвостового оперения существенно влияют на устойчивость самолета. А когда летательный аппарат устойчив и хорошо управляем, на нем можно легко и безопасно совершать различные маневры.

Простейшим маневром в воздухе является разворот или вираж. Выполняя эту фигуру пилотажа, летчик наклоняет самолет в сторону поворота — и составляющие подъемной силы развернут самолет в ту же сторону. Но чтобы при этом он не потерял высоту, надо увеличить подъемную силу. Пилот одновременно с отклонением ручки управления влево тянет ее на себя и тем самым увеличивает угол атаки.

Фигура высшего пилотажа — мертвая петля — является очень сложной для выполнения. Считается, что высший пилотаж зародился в 1913 г. именно с выполнения этой фигуры русским пилотом П.Н. Нестеровым. В те годы, когда скорость, развиваемая самолетом, была достаточно низкой, высший пилотаж применяли не только на тренировках и спортивных праздниках, но и во время воздушных боев с истребителями противника.

Наиболее опасной фигурой высшего пилотажа является штопор. Угол атаки при введении самолета в штопор нередко достигает 70°. Плавное обтекание крыла воздушными массами при этом нарушается и отклонение рулей управления становится малоэффективным. Поэтому выйти из штопора часто бывает очень трудно.

Из истории абсолютных мировых рекордов скорости полета. 20 сентября 1922 г., почти после двухлетнего перерыва, французский пилот Сади Лекуэнт «бьет» собственный рекорд. На этот раз самолет марки «Nieuport-Delage» разгоняется до 330,23 км/ч. 13 октября 1922 г. американский пилот У.Э. Митчелл сделал попытку отобрать у французов первенство. Его результат — 358,77 км/ч. Но Лекуэнт вновь выхолит вперед: 15 февраля 1923 г.—374,95 км/ч.

Американский самолет-разведчик «SR-71» способен развить скорость, превышающую 3,5 тыс. км/ч. для полетов на таких скоростях крылья самолета конструктивно были совмещены с горизонтальным оперением.

В наши дни выполнение фигур высшего пилотажа является доказательством исключительного мастерства пилота и связано с определенным риском. И это не удивительно — увеличение скоростей полета предъявляет пилоту и самолету новые требования. Взять, например, тот же разворот. При увеличении скорости полета его радиус значительно увеличивается. При скорости в 500 км/ч радиус разворота примерно равен 600 м, а при скорости в 1 800 км/ч он уже достигает 8 км.

В заключение следует остановиться еще на одной немаловажной детали конструкции самолета — шасси. Это устройство появилось уже на первых самолетах и во все времена было предназначено для передвижения самолета по земле и смягчения толчков, возникающих при посадке и взлете.

В первые годы самолетостроения переднее шасси обычно состояло из колес со спицами, которые при помощи деревянных стоек крепились к фюзеляжу. Заднее шасси было бесколесным и представляло собой обыкновенный хвостовой костыль, выполненный из дерева. Амортизаторов в современном понимании этого слова первые шасси не имели. Их роль выполняли резиновые ленты на колесах, которые поглощали удары о землю при посадке, а длинный искривленный полоз впереди шасси предохранял самолет от капотирования — переворачивания на нос.

В наши дни, когда конструкция самолета значительно увеличилась в весе, потребовались новые конструкции шасси. Теперь они состоят из штампованных стальных колес, мягких шин, металлических стоек, изготовленных из особо прочных материалов, пружинных или гидравлических амортизаторов.

Из истории абсолютных мировых рекордов скорости полета: В 1923 г. американская фирма «Curtiss» выпускает серию новых самолетов, летные характеристики которых позволяют пилотам Соединенных Штатов Америки установить несколько рекордов: 29 марта 1923 г. — пилот Р.Л. Моган (самолет «Curtiss К-6») — 380,67 км/ч; 2 ноября 1923 г. — пилот Э. Браун (самолет «Curtiss HS D-12») — 411,04 км/ч; 4 ноября 1923 г. — пилот Алфорл Дж. Уильямс (самолет «Curtiss R-2C-1») — 429,96 км/ч.

Шасси первых самолетов было неубирающимся. Во время полета это создавало дополнительное сопротивление и существенно снижало аэродинамические показатели аппарата. В 30-х гг. XX в. впервые появились конструкции самолетов, шасси которых убирались во время полета в специальные закрывающиеся ниши, расположенные обычно в крыльях.

На современных реактивных лайнерах-тяжеловозах приходится устанавливать многоколесные особо укрепленные шасси. Они представляют собой тележки, на каждую стойку которых приходится до 10 колес. Кроме этого снова вернулись к использованию носового шасси. Практически с самого начала авиастроения от него отказались, но в наши дни конструкторы считают, что именно оно обеспечивает более плавную и безопасную посадку.

К сожалению, никому не известно, когда человек впервые поднял голову к небу и обратил внимание на его пугающие размеры и вместе с тем фантастическую красоту. Не известно нам и то время, когда человек впервые заметил парящих в воздухе птиц и в голове его возникла мысль последовать за ними. Как любой, даже самый длинный путь начинается с…

Пожалуй, Российская империя пострадала в этот период сильнее остальных государств. Первая мировая война закончилась для нее социалистической революцией, которая в свою очередь переросла в кровопролитную гражданскую войну. Для страны наступило время голода, разрухи, хаоса. Не лучше обстояло дело и в области воздухоплавания и авиации. Первая попытка создания советского летательного аппарата была предпринята еще в годы…

Если кому-нибудь из вас приходилось стрелять в тире из винтовки, то вы знаете, что обозначает термин «отдача». Для остальных поясню. Вы, наверно, не раз видели, как ныряльщик, прыгая в воду с лодки, отталкивает ее в противоположном направлении. По такому же, но более сложному принципу летает ракета, а упрощенный вариант этого процесса как раз и представляет…

«Куда мы плывем? — думали моряки, с тревогой вглядываясь в даль. — Не встретим ли мы на своем пути неожиданное препятствие — рифы, мели, неприятеля?» Но много ли увидишь с палубы качающегося на волнах корабля? Вот если бы можно было подняться повыше… Вскоре на верхушке самой высокой мачты начали устраивать наблюдательный пост. Обзор стал гораздо…

В годы второй мировой войны конструкторы фашистской Германии добились неплохих результатов в области вертолетостроения. И это не случайно, ведь немецкие генералы, считая, что победа в войне во многом зависит от техники, требовали от авиаконструкторов создания самых разнообразных машин — от реактивных самолетов до ракет «U-2», от летающих монстров до загадочных винтокрылов. Перед самым началом войны…

Готов поспорить, мало кто догадывается, что знакомый каждому воздушный змей является самым старым летательным аппаратом на Земле и, следовательно, самым первым. А построен первый воздушный змей был очень изобретательными людьми, населяющими Древний Китай. Они дали человечеству бумагу, порох, изобрели фейерверк, известный нам как салют, построили Великую китайскую стену и еще множество полезных вещей, среди которых…

Рассказывая о летательных аппаратах, рожденных инженерной мыслью Н.Н. Поликарпова, нельзя не остановиться на самолете первоначального обучения «По-2» («У-2») — самолете-легенде. Это был самолет, на котором совершали свой первый полет практически все пилоты СССР в 20—30-х гг. XX в. О его надежности, летных характеристиках и безотказности ходят легенды, а рассказы о его применении в годы второй…

В начале 20-х гг. в СССР была предпринята попытка создать первый истребитель собственной конструкции — «И-1» («Ил-400»). Проектирование нового самолета поручили авиаконструктору Н.Н. Поликарпову. Первый же полет самолета закончился неудачей — аппарат после взлета упал на хвост. Специалистам ЦАГИ после длительных исследований удалось найти «болезнь», которой болел новый самолет — у истребителя центр парусности не…

Строительство лодочных гидросамолетов в России началось в 1913 г. под руководством Д.П. Григоровича, который, последовательно совершенствуя схему однодвигательного лодочного гидросамолета, разработал вполне работоспособную модель. На основе этой модели, построенной по схеме многостоечного биплана с толкающим воздушным винтом, весной 1915 г. конструктор создал очень удачную двухместную летающую лодку «М-5». Летающая лодка «М-5» значительно отличалась от своего…

Плечом к плечу с ведущими вертолетчиками Советского Союза Б.Н. Юрьевым, Н.К. Скржинским и И.П. Братухиным создавали свои, ставшие позже знаменитыми на весь мир винтокрылые машины конструкторы А.С. Яковлев, М.Л. Миль и Н.И. Камов. Опытно-конструкторское бюро М.Л. Миля было создано в 1947 г. К этому времени коллектив ОКБ завершил работу над проектом одновинтового летательного аппарата, первый…

Детям о самолетах: познавательная сказка про виды самолетов в картинках для детей, видео, задания, игры, презентация «Какие бывают самолеты и зачем они нужны» для детей.

Детям о самолетах

В этой статье Вы найдете познавательную информацию о самолетах и игры для детей на эту тему:

  1. презентацию и сказку «Какие бывают самолеты» для детей с заданиями и картинками,
  2. зачем нужны самолеты,
  3. логоритмику «Самолеты»,
  4. физкультминутки о самолета х,
  5. пальчиковую гимнастику про самолеты,
  6. подвижные игры про самолеты,
  7. дидактические игры для детей про самолеты.

Какие бывают самолеты

Познавательная сказка о самолетах для детей с развивающими заданиями и картинками

С чего всё начиналось, или зачем лететь на самолете на Остров Пальм?

Жил-да был в одном городе очень добрый человек. Это был очень знаменитый ветеринар. А ты знаешь, кто такой ветеринар и что он делает? (выслушайте ответ ребенка и уточните его, если необходимо). Это врач для животных. И наш ветеринар тоже лечил птиц, рыб, зверей. В городе его все звали уважительно – Петр Иванович Таблеткин. Или просто по фамилии — Доктор Таблеткин. Если заболела канарейка или повредила лапку собачка, жители города сразу же обращались к нему за помощью. И он всем помогал.

Однажды в погожий весенний день кто-то постучал в окно к ветеринару. «Кто это?» — удивился Петр Иванович и открыл окно. – «А! Галчонок. Залетай. Что принес? Письмо? От кого же? Давай прочитаю – видимо, это что-то срочное!». Петр Иванович открыл письмо и узнал почерк своего старого друга: «Здравствуйте, милый мой друг! Сейчас я работаю на Острове Пальм в океане. У нас началась эпидемия, очень многие животные заболели, нам нужна помощь. Очень прошу срочно прилететь к нам на остров и помочь. Прошу взять с собой набор лекарств и побольше. Твой друг Доктор Айболит».

«Срочно вылетаю!» — решил Петр Иванович – Только оставлю дежурить здесь вместо себя ветеринара Порошкова и соберу свой чемоданчик с лекарствами для животных». Сделав все эти дела, знаменитый ветеринар выехал в аэропорт.

Лётное поле

Рядом со зданием аэровокзала было поле. Очень необычное поле. Петр Иванович Таблеткин видел разные поля. Видел он поле для футболистов – оно называется «футбольное». Бывал он и на поле для игры в хоккей, оно называлось … Ты уже догадался, как? (хоккейное). И поле, на котором растет кукуруза он побывал – оно называлось «кукурузное поле». И поле, на котором растет рожь – «ржаное» поле. И поле с пшеницей. Наверное, ты тоже знаешь, как оно называлось — ? (пшеничное поле).

Но на таком поле он никогда еще не бывал. На нем были только одни самолеты. Ты уже догадался, что это было за поле и как оно называлось?

Примечание: Дайте возможность ребенку придумать название поля, а потом уточните, что это поле называлось «лётное». Почему? Да, потому что с него взлетают самолеты! На лётном поле было очень много разных самолетов и вертолетов. Петр Иванович никогда ранее на самолетах и вертолетах не летал, и поэтому растерялся. Какой же самолет мне подойдет и на каком я долечу до Острова Пальм?

Кто такой механик (техник)?

Вдруг увидел наш ветеринар маленький самолетик с двумя крыльями. А к нему подходил человек и дверь в кабину открывал. «Летчик пришел», — подумал Петр Иванович и помчался к самолету. — «Здравствуйте. Меня зовут Доктор Таблеткин. Я ветеринар. Мне надо срочно лететь на помощь моему другу на Остров Пальм. На острове заболело очень много животных. Можно на этом самолете туда долететь? Вы пилот и смогли бы мне помочь?»

— «Рад познакомиться», — улыбнулся в ответ ему незнакомец. – Меня зовут механик Винтов. Я не пилот. Я механик и слежу, чтобы самолеты были исправны. Мою профессию также называют «техник» . На этом самолетике долететь на остров Пальм, конечно, можно». — Он грустно покачал головой. — «Но лететь Вы будете слишком долго. Лучше садитесь на реактивный самолет, который вылетает завтра на Мадагаскар, так быстрее будет».

Знаменитый ветеринар очень удивился: « Мне надо на Остров Пальм и надо вылететь прямо сегодня. Зачем же я полечу не сегодня, а завтра, да еще и на Мадагаскар? И почему такая странная дорога будет быстрее?»

Винтов снова улыбнулся Петру Ивановичу и пояснил: «Реактивный самолет летит намного быстрее, чем этот маленький самолетик. Если Вы вылетите сегодня на этом самолетике, то будете лететь до Острова Пальм пять дней! И еще Вам придется несколько раз приземляться чтобы дозаправить самолет топливом. А реактивный самолет привезет Вас на Мадагаскар в тот же день. Там Вы пересядете на небольшой самолет и уже через несколько часов будете в нужном месте»

Самолеты винтовые и реактивные

Доктор очень заинтересовался этим сообщением и озадаченно спросил механика: «А как отличить быстрый самолет от медленного? Чтобы мне не ошибиться в следующий раз» — Посмотрите на эти два самолета. У одного самолета есть винт. Поэтому он называется «винтовой» , он летает медленно. Найдите винт у самолета на картинке.

А у другого самолета винта нет. Он называется «реактивный » и летит очень быстро!»

Задание ребенку: Найди на картинке винтовые самолеты и реактивные самолеты. Чем они отличаются друг от друга?

Формы крыла у самолета: прямое, треугольное, стреловидное.

«Ага, я понял!» – воскликнул Петр Иванович. –« Значит, если у самолета есть винт, то он медленно летает! А как-то еще можно отличить самолет скоростной от самолета медленного?» Техник Винтов с удовольствием стал объяснять дальше: «Есть ещё один важный признак. Это форма крыла у самолета. Посмотрите на это фото. На что похоже крыло?».

— «На стрелу!» — тут же ответил Доктор Таблеткин. «Да, — подтвердил с удовольствием Винтов. – «У этого самолета крыло имеет вид стрелы, поэтому такое крыло мы называем «стреловидное» . Если крыло стреловидное, то самолет летит быстрее, потому что такое крыло лучше рассекает воздух на большой скорости. А если крыло прямое – то скорость самолета ниже».

— А ещё какие крылья бывают у самолетов? — спросил врач — ветеринар.

— Бывает треугольное крыло, такие самолеты рассчитаны на очень большие скорости (такие скорости ещё называются сверхзвуковые ). Вот посмотрите на фото этого самолета — у него треугольное крыло.

Есть и самолеты с прямым крылом. Они летают медленнее всех других самолетов.

Задание детям: найди на картинке ниже самолеты: с прямым крылом, с треугольным крылом, со стреловидным крылом.

Ответы на задание для детей «Какие бывают самолеты»: синий квадрат — самолет с треугольным крылом, зеленый круг — самолет с прямым крылом, желтый квадрат и красный круг — самолеты со стреловидным крылом.

Зачем нужны разные самолеты?

— «А что такое «сверхзвуковые скорости и сверхзвуковые самолеты?»- спросил Петр Иванович Таблеткин.

— «Сверхзвуковыми называют самолеты, которые летают так быстро, что обгоняют звук от своего полета. Самолет уже пролетел, а звук до нас ещё не дошел. Такие самолеты летают в два раза быстрее обычных реактивных самолетов», — пояснил механик.

— «Я хочу полететь завтра на Остров Пальм на сверхзвуковом самолете!»- оживился Петр Иванович.

— «Долететь-то можно, но приземлиться, скорее всего, не получится. Остров то маленький, и сверхзвуковой самолет не успеет затормозить на летном поле», — уточнил Винтов.

— «А зачем нужны такие небольшие самолеты как тот, у которого мы стоим? Он с винтом, а значит медленно летает. И на нем быстро не долетишь. А вдобавок он еще и маленький. А это значит, что на нем много грузов не перевезешь. Зачем тогда он вообще нужен?» — спросил Петр Иванович.

-«О! Это очень важный и очень нужный самолет. У него есть одно чрезвычайно важное свойство. Видите, у этого самолета есть два больших крыла. И они расположены одно над другим, поэтому он может взлетать и садиться на очень маленькие площадки. И даже может сесть на пятачок земли на островке или в лесу.

Задание детям: А ты знаешь, что такое «пятачок земли» и откуда взялось это слово? (Пятачок – это пятикопеечная монета. Сейчас таким словом еще называют пятирублевую монету. Пятачком называют еще очень небольшой кусочек земли. А еще есть пятачок у поросенка – он тоже круглый и небольшой).

Техник Винтов продолжил: «Там, где не сможет сесть реактивный самолет, сможет приземлиться этот самолетик. Поэтому такие самолеты у нас летают на короткие расстояния в ближайшие села и развозят в них пассажиров и грузы. Сначала пассажиров и грузы доставляют большие реактивные самолеты в центральный большой аэропорт. А уже из него на маленьких самолетах их доставляют из этого большого города и главного аэропорта в небольшие городки и села».


Военные самолеты

Вдруг Таблеткин увидел на краю лётного поля самолеты без винтов. И в них заходили пилоты. Он радостно воскликнул: «Вот нужные мне самолеты! Они без винтов, а значит, они реактивные. И у них треугольные крылья, значит, они долетят до Острова Пальм очень — очень быстро, даже быстрее звука. Можно я полечу на них на Мадагаскар прямо сегодня? И с Мадагаскара я на маленьком самолете долечу до нужного мне острова»

«Конечно, этот самолет летает быстрее, чем любой пассажирский. Но на нем полететь не так просто!» — ответил механик. – «Ведь это военный самолет и в нем нет места для пассажиров. Видите, кабина рассчитана на одного летчика, а снизу висят ракеты ».

«Смотрите, а у другого самолета есть две кабины. Вторая кабина, наверное, предназначена для пассажира?» – спросил ветеринар.

«Нет, в задней кабине за летчиком должен сидеть штурман. Он подсказывает летчику, куда лететь. Это военный самолет. На всех военных самолетах места для пассажиров не предусмотрены. Поэтому на военных самолетах нет иллюминаторов — окошек» , — ответил Винтов.

Задания для детей:

Задание 1. Штурман всегда сидит сзади летчика. Найди на фотографии самолета кабину летчика и кабину штурмана.

Задание 2. А как вы думаете, это какой самолет — пассажирский или военный? Почему ты так думаешь? Как можно отличить по внешнему виду военный самолет от пассажирского?

Грузовые самолеты

«Скажите, пожалуйста, как можно перевезти животных с острова в мою клинику на лечение. Слоны и жирафы очень большие и тяжелые, они в пассажирский самолет не поместятся», — спросил Таблеткин.

«О! Для этого есть особые самолеты. Их называют грузовые. В грузовом самолете нет иллюминаторов. В нем очень большие двери для того, чтобы в него могли вместиться большие грузы. Посмотрите, вот на нашем летном поле идет погрузка в самолет. Чтобы груз поместился в самолете, у этого самолета нос и хвост открываются наружу – как будто это двери!

Вот начал подниматься вверх нос у грузового самолета. И он открылся как будто это не нос, а большая дверь в самолет!

Вот выдвигается впереди самолета вместо его носа специальная рампа, по которой в грузовой самолет сможет заехать техника. А сзади грузового самолета открываются грузовые створки. Сзади грузового самолета тоже есть рампа для заезда в самолет техники.

Самолет готов к погрузке!

Посмотрите, какой большой грузовой самолет! В такой самолет может поместиться и другой самолет поменьше, и большие машины, и даже вагоны поезда, и большой катер и даже несколько вертолетов, и танки, и строительная техника, и много автомобилей и автобус!»

Задание для детей: Посмотри на картинки и скажи, что будут перевозить по воздуху эти грузовые самолеты.

Петр Иванович был в восхищении от грузовых самолетов и их возможностей: «Теперь я буду спокоен за крупных животных! И буду знать, что при необходимости их можно перевезти в любую звериную больницу на материке. А какие ещё самолеты бывают кроме военных, пассажирских и грузовых?»

Какие еще бывают самолеты?

Механик Винтов промолчал в ответ и показал Таблеткину необычное фото. Посмотрите и вы на него. Как вы думаете, что здесь происходит и что за ниточки тянутся от первого самолета к другим? (выслушайте любые предположения детей, а после этого расскажите об этих самолетах). Он пояснил:

«Это самолеты — заправщики. Как вы думаете, почему они так называются — «заправщики»? (выслушайте ответы детей и их размышления и догадки). В грузовой самолет ставят большой бак для горючего и вешают шланги, к которым пристыковываются заправляемые самолеты для дозаправки. Это делается чтобы они смогли набрать горючего прямо в полете, не садясь на землю».

Вот еще один самолет — заправщик.

Есть на нашем летном поле и учебные самолеты. Как вы думаете, почему они так называются? Да, на этих самолетах учатся летать. Они очень маленькие. В них только два места: для летчика — инструктора и летчика, который учится управлять самолетом.

Бывают и спортивные пилотажные самолеты. В них естьтолько одно место — для летчика — спортсмена. Он показывает на этом самолете фигуры высшего пилотажа.

Вдруг раздался громкий шум. И на взлетно — посадочную полосу приземлился большой пассажирский самолет. «Он полетит на Мадагаскар завтра утром», — сказал Винтов. — «А сейчас после приземления и высадки пассажиров я пойду готовить его к завтрашнему полету. Приходите завтра, и Вы улетите на нем».

Петр Иванович Таблеткин поблагодарил Винтова за помощь. А назавтра утром он уже вылетал на самолете на Мадагаскар.

Что такое гидросамолет и самолет -амфибия?

Ближе к вечеру самолет приземлился на острове Мадагаскар. И Ветеринар пошел в здание аэровокзала узнать, как ему долететь до Острова Пальм.

«Извините, но рейсы на Остров Пальм отменены. Два дня назад на острове прошла буря и разрушила взлетно- посадочную полосу. Ее восстановление займет несколько дней», — сообщила ему диспетчер.

«Как же мне быть?» — спросил расстроенный Петр Иванович. — «Мне так важно как можно быстрее попасть на остров чтобы помогать людям и животным, попавшим в беду».

«Давайте мы Вас отправим на Остров Пальм гидросамолетом!» — предложила ему диспетчер. — Или самолетом — амфибией».

«А что это такое?» — удивился ветеринар.

«Слово «гидро» означает жидкость. Гидросамолет — это самолет, которому не нужна взлетно- посадочная полоса. Он может сесть прямо на воду. А ещё лучше использовать в таких случаях самолет — амфибию. Амфибии — это существа, которые могут жить и в воде, и на воздухе. И этот самолет может взлетать и с земли, и с воды, поэтому его так и назвали. У самолета — амфибии дно как у лодки, но есть и колеса как у обычного самолета».

«Я готов лететь на самолете-амфибии» — обрадовался Таблеткин.

«Пройдите к выходу номер 15. Самолет — амфибия улетает через один час».

Через несколько часов самолет — амфибия села на море рядом с Островом Пальм. Всех пассажиров пригласили пересесть на на катер, и катер доставил их в порт. «Ура! Как хорошо, что ты так быстро к нам приехал», -радостно встретил друга Доктор Айболит. — «Я плыл сюда на теплоходе целый месяц. Как тебе это удалось?». Мне помог механик Винтов правильно выбрать самолет и маршрут сюда. Расскажу тебе позже подробнее». И друзья пошли лечить зверей, которые давно уже ждали их помощи.

Детям о самолетах: зачем нужны самолеты

Самолеты придуманы людьми, чтобы обеспечить быструю перевозку людей и грузов. Ни один наземный и водный транспорт сейчас не может двигаться с такой скоростью как самолет.

После знакомства со сказкой, Ваш ребенок уже знает многие функции, которые выполняют самолеты, помогая людям. Дополните эту информацию.

Зачем нужны самолеты по их функциям:

  • Военные самолеты нужны чтобы защищать родину от врагов. Это могут быть истребители, бомбардировщики, разведчики, штурмовики, десантные, заправщики.
  • Грузовые самолеты перевозят грузы.
  • Пассажирские самолеты перевозят людей и их багаж.
  • Спортивные самолеты участвуют в соревнованиях.
  • Учебные самолеты используются для обучения полету летчиков и штурманов.
  • Сельскохозяйственные самолеты обрабатывают поля с урожаем и защищают их от вредителей.
  • Метеорологические самолеты — исследуют облака, тайфуны, влияют на погоду (вызывают дожди или прекращают их, разгоняя облака).
  • Санитарные и спасательные самолеты — перевозят больных и раненых, оказывают помощь пострадавшим людям.
  • Пожарные самолеты — тушат лесные пожары.
  • Экспериментальные самолеты и самолеты — летающие лаборатории — служат для испытания новых конструкций и двигателей.

Логоритмика: самолет

В ходе обучающего воображаемого путешествия на аэродром для знакомства ребенка с разными видами самолетов, вам захочется отдохнуть вместе с детьми. Сделайте упражнения логоритмики для малышей чтобы отдохнуть!

Логоритмика «Самолет»: первый вариант

Руки в стороны – в полет
Отправляем самолет.
(прямые руки в сторону, бег по кругу)

Правое крыло вперед,
(правую выпрямленную руку выдвигаем чуть веред)
Полетел наш самолет.

Левое крыло вперед,
(левую выпрямленную руку выдвигаем чуть веред)
Повернул наш самолет.

Мы летели высоко,
(поднимаем руки повыше)
Мы летели низко.
(чуть опускаем руки)
Мы летели далеко,
Прилетели близко.

Второй вариант логоритмического упражнения «Самолет»

Ну-ка, летчики-пилоты,
Приготовились к полету
(дети стоят прямо, руки вниз, осанка гордая, плечи расправлены).

К самолету подошли
И по трапу вверх взошли
(маршируем или изображаем вход по трапу).

Начинается полет,
Загудел наш самолет.
(Дети приседают на одно колено, расставив руки в стороны как крылья самолета и гудят: ууууу)

Вверх поднялся, полетел.
(Дети встают на ноги, выпрямленные руки в стороны)
Летчик вправо посмотрел,
(Повернуть голову вправо)
Летчик влево посмотрел
(Повернуть голову влево).

Быстро полетел вперед
Быстрокрылый самолет.
(Руки в стороны, быстрый бег на носках по кругу)

Третий вариант логоритмики «Самолет»

Пролетает самолет
С ним собрался я в полет.
(Показать рукой в небо)

Правое крыло отвел
(Вытянуть правую руку в сторону, посмотреть на пальцы)
Левое крыло отвел
(Вытянуть левую руку в сторону, посмотреть на пальцы)

Я мотор завожу
(Дети делают вращательные движения руками перед собой)
И внимательно слежу.

Поднимаюсь в высь – лечу-у-у-у
(Нужно подняться на носки, развести руки в стороны и бег по кругу)

На посадку я лечу,
Приземлиться я хочу.
(Дети приземляются на одно колено, руки опускают)

Дидактическая игра «Самолеты»

Дидактическая игра «Самолеты». Вариант 1. Для детей старшего дошкольного возраста. Устройте четыре летных поля: для пассажирских самолетов, для грузовых самолетов, для военных самолетов и для спортивно — тренировочных и учебных самолетов.

Попросите детей отгадать, зачем нужен самолет, изображенный на картинке.

Ребенку нужно разложить картинки самолетов по группам в соответствии с назначением самолета, отправив каждый самолет на подходящее ему летное поле и объяснив, почему он считает, что это грузовой самолет или что это пассажирский самолет.

Картинки для этой игры Вы найдете в статье

Дидактическая игра «Самолеты». Вариант 2. Игра для малышей. Цель игры — р азвитие слухового внимания. Предложите ребенку отгадать, высоко или низко летит самолет. Если Вы гудите высоким голосом, то самолет летит высоко, если низким — то низко.

Дидактическая игра «Самолеты». Вариант 3. Игра для детей младшего дошкольного возраста.

Выложите перед ребенком 4 — 8 прямоугольников разного размера (для самых маленьких возьмите четыре фигуры, для детей постарше — шесть или восемь фигур) — это лётные поля (аэродромы). Они должны быть выложены перед малышом как сериационный ряд — то есть от самого маленького к самому большому.

Разложите вперемешку силуэты самолетиков разной величины. Количество самолетиков должно соответствовать количеству прямоугольников.

Задача ребенка — выложить самолетики в сериационный ряд по величине (от самого маленького к самому большому) и подобрать каждому самолету подходящее для него «летное поле». Т.е. расставить самолеты на «аэродромы» в соответствии с их величиной.

Дидактическая игра «Самолеты». Вариант 4. Для самых маленьких.

Детям с 2-3 лет можно дать картинки самолетов, разрезанные на части. Используйте для этого картинки из первого варианта игры «Самолеты». Для самых маленьких мы делим картинку на 2 равные части, затем — на 3- 4 части. Для более старших детей можно делить картинку ломаными линиями на большее количество частей.

Дидактическая игра «Самолет летит». Для детей старшего дошкольного возраста

Игра развивает умение ориентироваться на листе бумаги, прослеживающую функцию взора, развивает способность к сведению и разведению зрительных осей глаз ребенка.

Первый вариант.

Вам понадобится взлетно — посадочная полоса со стрелками. Нарисуйте «взлетно — посадочную полосу» для самолета — вертикальный прямоугольник. Разделите его вертикальной чертой на две части. На правой части взлетной полосы нарисуйте стрелку вверх, на левой — стрелку вниз.

Ход игры. Предложите ребенку повторять движение самолета взглядом, ориентируясь на стрелки на взлетно — посадочной полосе. Наш самолет движется по взлетно — посадочной полосе вперед (скользим взглядом по правой стороне прямоугольника вверх до конца полосы). Самолет поворачивает налево, делает разворот и разворачивается обратно. И следует по левой стороне полосы по стрелке (сверху вниз). Снова разворот и движемся вперед. А теперь постараемся сделать эти движения взглядом быстрее.

Второй вариант

Вам понадобится квадрат 4 х 4 клетки. Нарисуйте такой квадрат на листе бумаги. Клетки должны быть очень крупными. В дальнейшем Вы сможете увеличить количество клеток в квадрате, чтобы давать более сложные задания ребенку.

Сделайте два одинаковых квадрата — один Вы дадите ребенку, а другой будет у Вас в руках.

Поставьте в одной из клеток точку. В ней находится самолет.

Ход игры. Вы диктуете маршрут самолета, передвигая одновременно фишку по клеткам своего поля, а ребенок прослеживает его взглядом. Нужно не сойти с маршрута. Сначала маршрут составляет 3-4 хода. Например: «Одна клетка вверх. Две клетки вправо. Одна клетка вниз. Три клетки влево. Доложите, где находится самолет?». Сравнивается место на Вашей «карте» полета и то, что получилось у ребенка.

Если ребенку трудно следить взглядом или он пока еще не очень легко ориентируется в пространстве, то на первых порах можно делать движения с фишкой. И лишь потом делать их в умственном плане и отслеживать взглядом.

Физкультминутки «Самолет»

Физкультминутку можно выполнить в любое время, когда Вы увидите, что ребенку нужен отдых. Выбирайте из этой подборки о самолетах ту физкультминутку, которая больше понравится Вам и Вашим малышам!

Физкультминутка про самолет «Мы летим над облаками»

Мы летим над облаками.
(Руки в стороны)
Машем папе, машем маме.
(По очереди машем обеими руками)

Видим, как течет река,
(Показываем руками волнообразное движение)
Видим лодке рыбака.
(Показываем руками, как рыбак забрасывает удочку)

Осторожнее: гора!
(Наклон влево — право)
Приземляться нам пора!

(Присесть на одно колено, руки в стороны)

Физкультминутка «Самолеты загудели»

Дети на первую строчку делают вращательные движения руками перед грудью. На вторую строчку дети выпрямляют руки в стороны как крылья у самолета и «летят» (бег по кругу). На третью строчку — приседают. На четвертую снова летят.

Самолеты загудели,
Самолеты полетели,
На поляне тихо сели,
Да и снова полетели.

Физкультминутка «Полетел наш самолет»

Полетели, полетели,
Мы руками завертели.
(Дети вращают руками перед грудью)

Руки в стороны – в полет
Отправляем самолет,
(Дети разводят прямые руки в стороны)

Правое крыло вперед,
(Поворот туловища вправо с заведением правой руки вперед)
Левое крыло вперед.
(Поворот туловища влево с заведением левой руки вперед).
Раз, два, три, четыре – Полетел наш самолет.

(Бег по кругу с разведенными в стороны прямыми руками)

Физкультминутка «Появился самолет»

Руки ставим мы вразлёт:
Появился самолёт.
(Руки в стороны.)

Мах крылом туда-сюда,
(Наклоны влево-вправо.)
Делай «раз», делай «два».
(Повороты влево-вправо.)
Раз и два, раз и два!
Раз и два, раз и два!

Руки в стороны держите,
Друг на друга посмотрите.
(Руки в стороны, повороты влево-вправо.)
Раз и два, раз и два!
Раз и два, раз и два!

Мы опустим руки вниз,
На места скорей садись! (Дети опускают руки вниз и садятся на свои места)

Смотрите, в небе самолет,
А в самолете том пилот.
Штурвалом ловко управляет
И между облаков летает.

Под самолетом — то гора,
То лес дремучий, то нора,
То в небо дивится народ,
То зайцы водят хоровод (Автор — Александр Естафеев)

Какие движения делаются под эту песню Вы увидите в видео ниже. Сначала песня поется в медленном темпе, затем всё быстрее и быстрее.

Физкультминутка для самых маленьких «Расправил крылья самолет»

Жу-жу- жу, жу-жу-жу,
Я моторчик завожу.
(Вращательные движения руками перед грудью).
Расправил крылья самолет,
Мы отправляемся в полет
У-у-у-ууууу,
Мы летим в Москвууууу! (Руки в стороны, бег на носочках) Прилетели.

Физкультминутка «Мы сегодня самолеты»

Мы сегодня самолеты,
(Дети сидят и делают руками вращательные движения — «заводят мотор»)
Мы не дети, мы пилоты.
(Хлопки в ладоши).
Руки – нос, и руки – крылья
(прикоснуться пальцем к носу, а затем выпрямить руки в сторону как крылья)
Полетела эскадрилья. (бег, руки в стороны).

Детям о самолетах: подвижная игра «Самолеты»

Игра 1. Игра «Самолеты» для закрепления правильного произношения звука р.

Дети делают вращательные движения руками перед грудью — «заводят моторы» и говорят ррррр. Затем бегут по кругу, держа выпрямленные руки в стороны как крылья самолета. На словах «Самолеты, на посадку!» дети должны быстро «прилететь» на аэродром и сесть на одно колено, держа руки в стороны как крылья.

Игра 2. Подвижная игра «Самолеты». В этой игре дети познакомятся с командами, которые дает диспетчер пилоту.

В игре в самолеты также дети научатся действовать по сингалу, а также бегать по площадке в разных направлениях, не наталкиваясь друг на друга.

Покажите детям все игровые действия.

Взрослый выполняет роль диспетчера дает сигнал: «Запустить двигатель!», и дети делают вращательные движения руками перед грудью. Далее взрослый в роли диспетчера говорит: «Выруливайте на взлет, взлетайте. Полетели!», а дети разводят прямые руки в стороны и летают по площадке.

В конце игры дается сигнал: «На посадку! Заруливайте на стоянку», и дети прибегают на «аэродром» (место, где находится аэродром, обговаривается до начала игры).

Могут быть и другие команды диспетчера: «Туман! Разворачивайтесь. Летите на запасной аэродром», «Облетайте грозу», «Вы опасно сближаетесь. Уступите дорогу самолету … .(название)»

Обратите внимание: В этой подвижной игре ребенок узнает, что может быть в полете и как реагировать на эти события пилоту. Эту информацию дети смогут использовать и в своих сюжетно -ролевых и режиссерских играх с самолетами.

Пальчиковая гимнастика «Самолет»

Пальчиковая гимнастика «Я построю самолет»

Для пальчиковой гимнастики мы будем использовать стихотворение В. Шишова «Я построю самолет».

Я построю самолёт,
Шлем надену, и в полёт.
Сквозь волнистые туманы,
Полечу в другие страны,
Над морями и лесами,
Над горами и полями,
Облечу весь шар земной,
А потом вернусь домой.
В. Шишков

Движения руками в пальчиковой гимнастике «Самолет»: вариант 1.

  • первая строчка. Дети стучат кулачками друг о друга.
  • вторая строчка. Дети изображают, как надевают шлем на голову.
  • третья и четвертая строчка. Волнообразные движения обеими руками.
  • пятая строчка. Правая ладонь у бровей как будто смотрим вдаль.
  • шестая строчка. Левая ладонь у бровей — смотрим вдаль.
  • седьмая строчка — рисуем в воздухе круг правой рукой
  • восьмая строчка — делаем над головой фигуру — «крышу» — обеими руками.

Другой вариант пальчиковой гимнастики «Самолет»

  • первая строчка. Прямые руки разводим в стороны как крылья самолета.
  • вторая строчка. Двумя руками показываем шлем над головой.
  • третья и четвертая строчка. Ребенок кладет ладошки на стол тыльной стороной вверх и шевелит всеми пальчиками на обеих руках, чуть приподнимая их с поверхности стола.
  • пятая и шестая строчка — делаем «брызгающие» движения всеми пальчиками обеих рук одновременно.
  • седьмая строчка — обхватываем обеими руками воображаемый шар
  • восьмая строчка — перекрещиваем руки (левая рука смотрит вправо, а правая — влево и шевелим пальчиками обеих рук как крыльями птички)

Пальчиковая гимнастика «Самолет построим сами»

Вам понадобится обычный карандаш. Положите карандаш на середину среднего пальца правой руки (кисть находится ладонью вниз). Пропустите другой карандаш под указательным и безымянными пальчиками (это делает взрослый). Получается самолет из двух карандашей. Ребенок изображает как летает его самолет под стихи А. Барто:

Самолёт построим сами,
Понесёмся над лесами.
Понесёмся над лесами,
А потом вернёмся к маме.

Затем повторите это движение другой рукой.

Пальчиковая гимнастика «Летит самолет высоко-высоко»

Правая рука ребенка изображает самолет: нужно развести и выпрямить большой палец и безымянный палец. Это крылья самолета. А другие три пальчика (указательный, средний и безымянный) держать рядом друг с другом, не разводя их друг от друга (это корпус самолета).

Летит самолёт высоко-высоко,
Ему на посадку зайти нелегко!
(Дети передвигают руку — самолет в разных направлениях, следя чтобы и крылья самолета «смотрели» в сторону, и чтобы корпус самолета был едиными и не разделялся на отдельные части).

Лётчик за кругом делает круг.
Ему самолёт товарищ и друг!
(Дети делают движения по кругу рукой — самолетом).

На взлётную полосу сел самолёт,
Вперёд побежал — и закончен полёт.
(Дети опускают руку — самолет на стол, передвигают ее по столу и останавливают руку).

Двери открылись, под трапом земля,
И пассажиров встречают друзья.
(Развести ладони)

Презентация для детей про самолеты

Также Вы можете скачать эту же презентацию по познавательной сказке про самолеты в нашей группе Вконтакте «Развитие ребенка от рождения до школы» (см. раздел группы «Документы» справа под видеозаписями сообщества).

Видео для детей о самолетах

В этом видео дети узнают о необычных самолетах — гидросамолетах, самолетах — амфибиях. Видео будет интересно детям школьного возраста и взрослым. Это видео моего любимого телеканала «Радость моя».

И еще одно видео этого же телеканала для детей — видео о самолетах — гигантах и о том, что такое авиамоделирование.

Еще о самолетах для детей:

34 загадки для детей дошкольного и младшего школьного возраста. Виды загадок. Как сочинить загадку о самолете вместе с ребенком.

Эту статью мы подготовили специально для мальчишек сайта «Родная тропинка» как подарок к празднику 23 февраля совместно с моим мужем.

Познавательную сказку для детей о самолетах и их видах и презентацию создал для детей мой муж Андрей — авиаконструктор по профессии. А я — автор этого сайта — разработала игры и задания для детей по теме «Детям о самолетах». Мы включили в материалы статьи только ту информацию о самолетах, которую ребенок может использовать в своих играх о путешествиях, в конструировании, рисовании, лепке, аппликации, изображая в них разные виды самолетов.

Мы старались учесть главное требование к познавательной сказке для ребенка — чтобы он сам активно участвовал в ней, задавал вопросы, сравнивал, анализировал, обсуждал, делал выводы, доказывал, а не просто запоминал. И я очень надеюсь, что нам это удалось! Будем благодарны за Ваши комментарии к этой статье.

Получите НОВЫЙ БЕСПЛАТНЫЙ АУДИОКУРС С ИГРОВЫМ ПРИЛОЖЕНИЕМ

"Развитие речи от 0 до 7 лет: что важно знать и что делать. Шпаргалка для родителей"

Кликните на или на обложку курса ниже для бесплатной подписки

Требования к силовой установке сводятся к уменьшению значений таких характеристик двигателя, как его удельная масса у да >

КОНСТРУКЦИЯ ГОРИЗОНТАЛЬНОГО ОПЕРЕНИЯ САМ-А

Назначение и составные части оперения. Оперение - это несущие поверхности, являющиеся органами устойчивости и управляемости самолета. Оно состоит из горизонтального и вертикального оперения.

Горизонтальное оперение (ГО) предназначено для обеспечения продольной, а вертикальное оперение (ВО) - путевой устойчивости и управляемости самолета. Эти задачи решаются образованием на оперении переменных по величине и направлению аэродинамических сил, необходимых для обеспечения заданных режимов полета.

Основное требование к оперению - эффективность оперения - зависит от скоростного напора, площади оперения, его форм и рас­положения, жесткости оперения и жесткости опор, к которым оно крепится. Обеспечение высокой эффективности оперения для получения необходимых характеристик устойчивости и управляе­мости самолета на всех режимах полета, определяемых ТТТ к самолетам в зависимости от их назначения и условий применения, при наименьшей массе оперения является основным требованием к оперению. Выполнение этого требова­ния достигается прежде всего выбором рациональных форм, значений параметров и расположения оперения.

Конструкция и компоновка ГО с разъемным установленным на фюзеляже стабилизатором. конструк­ция и компоновка оперения, состоящего из разъемного (из двух половин) ГО и ВО, установленных на хвостовой части фюзеляжа. ГО - трапециевидной формы в плане с двухлонжеронным стабилизатором I и однолонжеронным РВ 2 с триммером 3 в корневой части руля. Конструкция этого стабилизатора аналогична конструкции двухлонжеронното крыла. В месте узла навески РВ для восприятия сосредоточенной нагрузки от руля (в стабилизаторе стоит усилен­ная нервюра с мощными поясами 15 и глухой стенкой 17, подкрепленной стойками.

Воспринимаемую нагрузку эта нервюра передает на стенки лонжеронов и обшив­ку стабилизатора работая на сдвиг и изгиб в своей плоскости

КОНСТРУКЦИЯ ШАССИ САМОЛЕТА

Назначение шасси

Конструкция опоры состоит

Основные требования к шасси

· Амортизацию динамических нагрузок, возникающих при посадке и рулении.

· возможность разворотов самолета на 180” на ВПП аэродромов заданного класса (определенной ширины).

· соответствие опорных элементов назначению, условиям эксплуатации и весовым характеристикам самолета.

· надежную фиксацию опор и створок шасси в выпущенном и убранном положе­ниях. Должна быть исключена возможность самопроизвольного выпадания шасси в полете и складывания его на земле.

· Шасси самолета должно: иметь возможно меньшие габариты (меньшее лобовое сопротивление), особенно в убранном положении; обеспечивать самолету необходи­мый посадочный (а для некоторых схем шасси и взлетный) угол;

КОНСТРУКЦИЯ КРЫЛА

Назначение крыла

Требования к крылу . Кроме общих для всего самолета требований (см. подразд. 1.12.3), к крылу предъявляются требования обеспечения возможно больше­го значения аэродинамического качества К и приращения коэффициента подъемной силы за счет механизации крыла Дс >

Взаимосвязь свойств самолета. Уравнение существования самолета.

КОНСТРУКЦИЯ КРЫЛА

Назначение крыла . Крыло - несущая поверхность самолета, предназначенная для создания аэродинамической подъемной силы, необходимой для обеспечения полета и маневров самолета на всех режимах, предусмотренных ТТТ. Крыло обеспечивает поперечную устойчивость и управляемость самолета и может быть использовано для крепления шасси, двигателей, размещения топлива, воору­жения и т.п. Крыло (рис. 2.1) представляет собой тонкостенную подкрепленную оболочку и состоит из каркаса и обшивки 6; каркас - из лонжеронов 1, стенок и стрингеров 2 (продольный набор) и нервюр 9 (поперечный набор). На крыле расположены средства механизации (предкрылки 7 и закрылки 3) для улучшения ВПХ самолета, элероны 5 и интерцепторы 4 - для управления самолетом относи­тельно продольной оси, пилоны 8 - для крепления двигателей.

Требования к крылу . Кроме общих для всего самолета требований (см. подразд. 1.12.3), к крылу предъявляются требования обеспечения возможно больше­го значения аэродинамического качества К и приращения коэффициента подъемной силы за счет механизации крыла Дс > , амех, возможно меньшего изменения характе­ристик устойчивости и управляемости самолета и его аэродинамических харак­теристик при переходе от дозвуковой к сверхзвуковой скорости полета, возможно меньшего поступления тепла в конструкцию (см. § 1.9), возможно ббльших объемов для размещения различных грузов.

Удовлетворение ТТТ для разных типов самолетов достигается прежде всего приданием крылу соответствующей формы и размеров.

СРЕДСТВА МЕХАНИЗАЦИИ КРЫЛА

Назначение механизации. Механизация крыла пред­ставляет собой систему устройств (закрылков, щитков, предкрылков и др.), предна­значенных для управления подъемной силой и сопротивлением самолета главным образом для улучшения его ВПХ. Эти же устройства могут применяться для повышения маневренных возможностей легких скоростных самолетов, а часть из них, например предкрылки, - для улучшения поперечной устойчивости и управля­емости самолета при полете на больших углах атаки, особенно на самолетах со стреловидным крылом.

Требования к механизации крыла . К механизации крыла, помимо общих требований, предъявляемых ко всему самолету в целом, предъявляются следующие специальные требования:

· максимальное увеличение с уа при отклонении средств механизации в посадочное положение при посадочных углах атаки самолета;

· минимальное увеличение с ха в убранном положении средств механизации;

· максимальное значение аэродинамического качества при разбеге самолета с небольшой тяговооруженностью и возможно большее увеличение с уа при отклоне­нии механизации во взлетное положение для самолетов с большой тяговооружен­ностью;

· возможно меньшие изменения значений m z (смещение ЦД крыла) при отклоне­нии средств механизации в рабочее положение;

· синхронность действий механизации на обеих консолях крыла, простота кон­струкции и высокая надежность работы.

Щитки Щитком называется подвижная часть нижней поверхности крыла у его задней кромки, отклоняемая вниз для увеличения подъем­ной силы крыла и его сопротивления. Различают щитки с фиксированной осью вращения (см. рис. 4.4, а) и выдвижные (см. рис. 4.3, б). Прирост подъемной силы получается за счет увеличения эффективной кривизны профиля при выпуске щитков и отсоса пограничного слоя с верхней поверхности крыла в зону разрежения за щитком.

Закрылком называется профилированная подвижная часть крыла, расположенная в его хвосто­вой части и отклоняемая вниз для увеличения подъемной силы крыла. При этом увеличивается и сопротивление самолета.

Предкрылки - профилированная подвижная часть крыла, расположенная в носовой его части (рис. При выпуске предкрылков 1 в полете между ними и носовой частью крыла 6 образуется профилированная щель, обеспе­чивающая более устойчивое обтекание крыла на больших углах атаки Предкрылки на каждом полукрыле состоят из нескольких секций, соединяющихся с каркасом крыла либо посредством рельсов и винтовых механизмов, соединенных с трансмиссией либо с помощью кронштейна 12 на предкрылке и кулисного механизма 11 в носовой чаш крыла

КОНСТРУКЦИЯ ЭЛЕРОНОВ

Элероны - подвижные части крыла, расположенные у задней кромки крыла на его концах и отклоняемые одновременно в противоположные стороны (один элерон - вверх, другой элерон - вниз) для создания крена. Они предназначены для управления самолетом относительно его продольной оси X.

Требования к элеронам , кроме общих для всех агрегатов самолета требований, включают обеспечение эффективного управления по крену на всех режимах полета самолета, предусмотренных ТТТ.

Конструкция элеронов Элероны, как и другие органы управле­ния самолетом (рули высоты и рули направления), по внешним формам и кон­струкции (по силовым элементам, образующим силовую схему, их назначению, конструкции и работе при передаче нагрузок) аналогичны крылу. Как и конструк­ция крыла, конструкция элерона состоит из каркаса и обшивки. Каркас состоит из лонжерона, стрингеров, нервюр, диафрагм, усиливающих вырезы в носке элерона (см. рис. 4.12, а) под узлы крепления и приводы управления, устанавливаемые на лонжероне. Для уменьшения деформаций элерона увеличивают число его опор (как минимум до трех). Однако при изгибе крыла и элерона из-за разных их жесткостей на изгиб и нагрузок возникают силы, направленные вдоль узлов навески элерона. Чтобы не было заклинивания элеронов, среди узлов навески должны быть один-два узла, допускающих перемещение элерона вдоль размаха относительно узлов на крыле. Это узлы с двумя степенями свободы: либо кардан либо торцевые узлы типа консольного болта ось которых совпадает с осью вращения элерона) и вдоль оси которых элерон может свободно перемещаться.. В то же время хотя бы одна из опор элерона должна фиксировать его положение по размаху крыла и представлять собой обычную шарнирную опору с одной степенью свободы В самих узлах навески элерона должны устанавливаться подшипники, обеспечивающие свободное отклонение элеронов.

КОНСТРУКЦИЯ ШАССИ САМОЛЕТА

Назначение шасси . Шасси представляет собой систему опор (рис. 7.1), необходимых для взлета, посадки, передвижения и стоянки самолета на земле, палубе корабля или воде.

Конструкция опоры состоит из опорных элементов - колес, лыж или других устройств, посредством которых самолет соприкасается с поверхностью места базирования (аэродромом), и силовых элементов - стоек, траверс, подкосов и других, соединяющих опорные элементы с конструкцией фюзеляжа или крыла. В конструкцию опор входит амортизационная система и тормозные устройства, которые позволяют:

воспринимать с помощью шасси возникающие при соприкосновении самолета с аэродромом статические и динамические нагрузки, предохраняя тем самым кон­струкцию агрегатов самолета от разрушения;

рассеивать поглощаемую энергию ударов самолета при посадке и рулении по неровной поверхности, чтобы предотвратить колебания самолета;

поглощать и рассеивать значительную часть кинетической энергии поступатель­ного движения самолета после его приземления для сокращения длины пробега.

Основные требования к шасси , кроме общих ко всем агрегатам требова­ний (например, возможно меньшая масса при достаточных прочности и долговеч­ности), включают и ряд специфических требований. Шасси самолета должно обес­печивать в ожидаемых условиях эксплуа­тации (имеются в виду класс аэродрома, размеры и состояние ВПП, погодные ус­ловия и т.д.);

устойчивость и управляемость самоле­та при разбеге, пробеге, рулении, маневрировании и буксировке. Необходимые значения характеристик устойчивости и управляемости самолета при его движении по аэродрому достигаются во многом выбором схемы и параметров шасси, характеристик амортизационной и тормозной систем;

·Амортизацию динамических нагрузок, возникающих при посадке и рулении.

·возможность разворотов самолета на 180” на ВПП аэродромов заданного класса (определенной ширины).

·соответствие опорных элементов назначению, условиям эксплуатации и весовым характеристикам самолета.

·надежную фиксацию опор и створок шасси в выпущенном и убранном положе­ниях. Должна быть исключена возможность самопроизвольного выпадания шасси в полете и складывания его на земле.

·Шасси самолета должно: иметь возможно меньшие габариты (меньшее лобовое сопротивление), особенно в убранном положении; обеспечивать самолету необходи­мый посадочный (а для некоторых схем шасси и взлетный) угол;

Вопрос 1 Требования, предъявляемые к ЛА.

ТРЕБОВАНИЕ ПРЕДЪЯВЛЯЕМОЕ К ЛА

Требования к самолетам различны. Основным требованием является обеспечение наиболее высокого уровня их эффективности при определенных затратах на разработку, создание и эксплуатацию. Оно должно обеспечиваться высокими уровнями совершенства аэродинамики самолета, его силовой установки, авиационного и радиоэлектронного оборудования, достаточными прочностью и жесткостью конструкции, высокими надежностью, живучестью и безопасностью полетов, хорошими эксплуатационными качествами, а также высоким уровнем ремонтопригодности и технологичности конструкции. Все эти требования должны выполняться при наименьшей массе конструкции.

Требования аэродинамики заключаются в выборе таких внеш­них форм, размеров и значений параметров агрегатов и их взаимного расположе­ния, которые позволили бы получать летно-тактические характеристики самолета, определяемые ТТТ, при наименьших энергетических затратах.

Требования к силовой установке сводятся к уменьшению значений таких характеристик двигателя, как его удельная масса у да > особенно для самолетов с большой тяговооруженностью, и удельный расход топлива с^, особенно для самолетов с большой дальностью полета, к повышению удельной тяги двигате­ля, его надежности и ресурса. Входные устройства (воздухозаборники) должны обеспечивать устойчивую работу двигателя на всех режимах полета, предусмотрен­ных ТТТ. Выхлопное сопло не должно увеличивать общее сопротивление самолета. Устройство реверса тяги должно быть эффективным (быстро срабатывать и созда­вать большую отрицательную тягу). Конструкция, конфигурация и местоположение входных и выходных устройств не должны способствовать увеличению заметности самолета.

Требования к авиационному и радиоэлектронно­му оборудованию являются предметом изучения специальных дисцип­лин. Здесь отметим, что они должны обеспечивать выполнение задач, предусмот­ренных назначением самолета и ТТТ к нему, а также высокую надежность работы, удобства в эксплуатации при малой массе и объемах, совместимость в работе с другими системами самолета и не ухудшать их характеристик.

Требование достаточных прочности и жесткости при его удовлетворении в соответствии с требованиями ’’Норм прочности” должно обеспечить конструкции способность воспринимать без разрушения и чрезмерных деформаций эксплуатационные нагрузки.

Требования надежности и безопасности полета. Под надежностью конструкции понимают се способность выполнять заданные функции с сохранением значений эксплуатационных показателей в течение установленного срока службы. Надежность конструкции оценивается вероятностью ее безотказной работы в течение этого срока. Зависит надежность от сложности конструкции, качества изготовления и условий эксплуатации. Повысит!, надежность можно путем уменьшения числа деталей конструкции и резервированием наиболее важных ее элементов.

Требования живучести. Живучесть - это способность самолета продолжать выполнять задачу при наличии повреждений.

Эксплуатационные требования и требования ре­монтопригодности при их удовлетворении должны обеспечивать высокую эксплуатационную технологичность конструкции, ее приспособленность к техническому обслуживанию и ремонту в процессе эксплуатации при наимень­ших трудозатратах.

Требование высокой технологичности определяет такие свойства конструкции, которые позволяют снизить трудозатраты на ее изготовление, сократить сроки освоения производства, повысить автоматизацию и механизацию производственных процессов при минимальной стоимости

Требование минимальной массы. Удовлетворение всех перечисленных выше требований должно осуществляться при возможно меньшей массе конструкции. Перетяжеление конструкции приводит к уменьшению массы целевой нагрузки или к резкому увеличению взлетной массы самолета.

Анализ изложенных требований показывает, что некоторые из них дополняют друг друга. Так, например, увеличение толщины обшивки улучшает жесткостные характеристики конструкции агрегатов, повышает ее прочность, снижает вероят­ность возникновения вибраций, улучшает качество поверхности и тем самым аэродинамику. Однако более характерна противоречивость требований. Так, почти все требования противоречат

Основные части самолета и их назначение.

Конспект по развитию речи в старшей группе

На тему "Воздушный транспорт"

Воспитатель МБДОУ г. Иркутска детского сада №109 Мотоева Л.Л.

Цель: Развитие познавательного интереса к воздушному транспорту.

Программное содержание:

1.Познакомить детей с историей возникновения воздушного транспорта, обогатив представления детей о нем.

2. Продолжать учить отвечать полным ответами.

3. Закрепить знания детей о частях самолета и вертолета.

4. Развивать связную речь, обогащая словарь детей словами - названиями транспортных средств, профессий людей.

5. Развивать воображение, память и мышление детей

6. Воспитывать умение внимательно слушать воспитателя и сверстников.

Методы и приемы:

* наглядный,

* информационно-рецептивный,

* словесный,

* игровой,

* использование технических средств,

* метод здоровьезберегающих технологий.

Материал:

* картинки с изображением воздушных видов транспорта;

*мультимедийная презентация «История возникновения воздушного транспорта»;

* разрезные картинки воздушного транспорта к игре "Сложи картинку";

*мяч.

Ход занятия

Ребята, сегодня к нам пришли гости. Давайте поприведствуем их. Гости наши хотят узнать что вы знаете и умеете. А вот о чем именно мы должны рассказать нашим гостям можно узнать, заглянув вот в эти конверты. Вот только проблема в том, что картинки кто-то разрезал. Ребята, вы поможите мне их сложить?

Проводиться игра "Сложи картинку". Ребята, что изображено на собранных вами картинках? Молодцы!

Отгадайте загадки:

Крыльев нет у этой птицы,

но нельзя не удивиться:

Лишь распустит птица хвост

И поднимется до звезд (Ракета)

Это что за вентилятор,

Над землей завис ребята!

И ревет и тарахтит,

Хоть без крыльев, но летит (вертолет)

Кто мне скажет, что за птица

В небесах, как ветер мчится,

Белый чертит за собой

След в лазури голубой?

А ведет его пилот!

Что же это? (самолет)

С виду это самолет.

Крылья есть и есть пилот.

Хорошо летать умеет,

Но мотора не имеет. (планер)

Молодцы! О чем были загадки? (про воздушный транспорт)

Так, значит о чем мы сегодня с вами поведем нашу беседу? (о воздушном транспорте)

Давайте посмотрим как человек покорил небо.

История транспорта

Человек смотрел на птиц и хотел научится так же как они летать. Он много думал и решил сделать себе крылья.

Но так как птицы летают у него не получалось. И тогда он изобрел воздушный шар, который нагревался теплым воздухом. Только такой шар не мог далеко летать. Сейчас такой воздушный шар называется АЭРОСТАТ.

Затем человек на аэростат прикрепил двигатель – получился дирижабль

А еще придумал планёр, правда он был без двигателя и парил в воздушном потоке, но с крыльями.

И вот когда человек соединил дирижабль и планёр – получился самолет с двигателем и крыльями, который смог перевозить пассажиров и грузы.

Там где нельзя сесть и взлететь самолету выручает вертолет.

Неизведанные дали манили человека в космос и он создал аппарат для полета в космос –ракету.

Для того чтобы напомнить о воздушных профессиях, предлагаю поиграть

Игра "Вопрос-ответ" (с мячом)

1.Почему этот транспорт называется воздушный? (потому что он летает по воздуху).

2.Для чего нужен воздушный транспорт? (Чтобы быстрее перевозить людей и грузы).

3.Кто управляет самолётом? (Самолетом управляет летчик).

4. Как по-другому можно назвать летчика? (пилот)

5. Кто обеспечивает связь с землей, с аэропортом во время полета? (радист)

6. Кто проверяет правильность курса самолета? (штурман)

7. Кто проверяет исправность всех приборов и механизмов самолета, вертолетов и космического корабля? (инженер или борт-инженер)

8. Кто помогает пассажирам, приносит им обед и разносит напитки? (стюардесса)

9. Кто готовит самолет к полету на земле? (механики и рабочие на аэродроме)

10. Как можно назвать людей, которые строят самолеты? (самолетостроители)

11. Как называется профессия человека, который придумывает новые модели самолетов? (конструктор)

12. Кто исспытывает новые самолеты? (летчик-испытатель)

13. Как можно назвать пилота вертолета? (вертолетчик)

14. Кто управляет полетом космичекого корабля? (космонавт)

15. Как можно назвать людей которые строят ракеты? (ракетостроители)

16. Как называется команда летчиков? (Экипаж)

17. Для чего нужны парашюты? (Чтобы не разбиться, прыгая с самолета)

18. Где приземляются самолёты? (аэропорт, аэродром)

Игра "Летает - не летает". (на ковре) (Воспитатель называет транспорт если воздушный дети показывают "крылья", а если нет - топают ногами)

Вертолёт, метро, самолёт, ракета, трамвай, автобус, троллейбус, воздушный шар, лодка.

Динамическая пауза "Самолет и ракета"

Руки в стороны - в полет отправляем самолет.

Правое крыло в перед, левое крыло вперед.

Раз, два, три, четыре - полетел наш наш самолет.

А сейчас мы с вами, дети, улетаем на ракете.

На носочки поднимись, а потом руки вниз.

Вот летит ракета ввысь!

Составление рассказа "Отправляемся в полет"

Ребята, давайте отправимся с вами в воображаемый полет. Я предлагаю вам придумать название своего самолета. Потом расскажите, какого его назначение. Куда он летит? Кого или что везет? Какие происшествия могут случиться во время полета? Как члены экипажа преодолели трудности? Как завершился полет?

Работа с иллюстрациями

А) –Посмотрите внимательно на рисунки, что вы видите? (самолет и вертолет)

1. Из каких частей состоит самолет? (кабина, дверь, крылья, хвост, корпус, иллюминаторы, шасси)

2. Из каких частей состоит вертолет? (кабина, винт, хвост, колеса, корпус, иллюминаторы, дверь)

А знаешь ли ты, что колеса самолета называются шасси, а окна- иллюминаторы.

Б) Сравните самолет и вертолет.

1.Что есть у самолета и нет у вертолета? (крылья)

2.Что есть у вертолета и нет у самолета? (винт)

3. Что есть и у самолета и у вертолета? (кабина, хвост, иллюминаторы)

Игра «Доскажи словечко» (для закрепления изученного)

1.Распустила алый хвост,
Улетела в стаю звезд.
Наш народ построил эту
Межпланетную... (ракету)

2.В небесах грохочет гром
И ни облачка кругом.
Песнь раскатисто поёт
Винтокрылый (Вертолёт.)

3. В этом доме тишина,

Много окон, дверь одна.

Дом летит под небеса.

За окошком вся страна.

Дом отправился в полет.

Значит это... (самолет)

4. Тучек нет на горизонте,
Но раскрылся в небе зонтик,
Через несколько минут
Опустился...(парашют)

5. Смело в небе проплывает,
Обгоняя птиц полёт.
Человек им управляет.
Что такое? - (...самолет)

6. Без разгона ввысь взлетаю,
Стрекозу напоминаю.
Отправляюсь я в полёт,
Кто же это? (вертолет)

7. Это что там под луной?
Дыня с дом величиной?
В небесах парит корабль
Под названием... .(Дирижабль)

Итог занятия

О чём мы сегодня говорили? Что узнали нового?

Какое задание показалось вам самым интересным?

Какое задание вызвало у вас затруднение?

А кто на ваш взгляд был самым активным на занятии, себя не называть!

Какие вы, ребята, молодцы! Отлично работали на занятии. На этом наше занятие закончено. Что вы хотите сказать нашим гостям? (До свидания)